Molecular basis for agonism in the BB3 receptor: an epitope located on the interface of transmembrane-III, -VI, and -VII.

نویسندگان

  • F Gbahou
  • B Holst
  • T W Schwartz
چکیده

Epitopes determining the agonist property of two structurally distinct selective ligands for the human bombesin receptor subtype 3 (BB3), [D-Tyr6,(R)-Apa11,Phe13, Nle14]-bombesin(6-14) (Pep-1) and Ac-Phe-Trp-Ala-His(TauBzl)-Nip-Gly-Arg-NH2 (Pep-2), were mapped through systematic mutagenesis of the main ligand-binding pocket of the receptor. The mutational map for the smaller Pep-2 spanned the entire binding pocket of the BB3 receptor. In contrast, the much fewer mutational hits for the larger Pep-1 were confined to the center of the pocket, i.e., the opposing faces of the extracellular segments of transmembrane (TM)-III, TM-VI, and TM-VII. All the residues, which upon mutation affected Pep-1, were also hits for Pep-2 and included those that were most essential for the function of Pep-2: LeuIII:04 (Leu(123)), TyrVI:16 (Tyr(291)), and ArgVII:06 (Arg(316)). The BB3 receptor was found to signal with 12% ligand-independent activity that was strongly influenced both positively and negatively by several mutations in the binding pocket. The substitutions, which decreased the constitutive signaling, included not only the major mutational hits for the peptide agonists but also mutations more superficially located in the receptor. It is concluded that activation of the BB3 receptor is dependent upon an epitope in the main ligand-binding pocket at the interface between TM-III, TM-VI, and TM-VII that corresponds to the site where, for example, activating metal ion sites have been constructed previously in 7TM receptors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial agonism through a zinc-Ion switch constructed between transmembrane domains III and VII in the tachykinin NK(1) receptor.

Partly due to lack of detailed knowledge of the molecular recognition of ligands the structural basis for partial versus full agonism is not known. In the beta(2)-adrenergic receptor the agonist binding site has previously been structurally and functionally exchanged with an activating metal-ion site located between AspIII:08-or a His residue introduced at this position in transmembrane domain ...

متن کامل

Identification of an efficacy switch region in the ghrelin receptor responsible for interchange between agonism and inverse agonism.

The carboxyamidated wFwLL peptide was used as a core ligand to probe the structural basis for agonism versus inverse agonism in the constitutively active ghrelin receptor. In the ligand, an efficacy switch could be built at the N terminus, as exemplified by AwFwLL, which functioned as a high potency agonist, whereas KwFwLL was an equally high potency inverse agonist. The wFw-containing peptides...

متن کامل

Ghrelin receptor inverse agonists: identification of an active peptide core and its interaction epitopes on the receptor.

[D-Arg1,D-Phe5,D-Trp7,9,Leu11]Substance P functions as a low-potency antagonist but a high-potency full inverse agonist on the ghrelin receptor. Through a systematic deletion and substitution analysis of this peptide, the C-terminal carboxyamidated pentapeptide wFwLX was identified as the core structure, which itself displayed relatively low inverse agonist potency. Mutational analysis at 17 se...

متن کامل

In silico prediction of B cell epitopes of the extracellular domain of insulin-like growth factor-1 receptor

The insulin-like growth factor-1 receptor (IGF-1R) is a transmembrane receptor with tyrosine kinase activity. The receptor plays a critical role in cancer. Using monoclonal antibodies (MAbs) against the IGF-1R, typically blocks ligand binding and enhances down-regulation of the cell-surface IGF-1R. Some MAbs such as cixutumumab are under clinical trial investigation. Targeting multiple distinct...

متن کامل

Molecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers

Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 333 1  شماره 

صفحات  -

تاریخ انتشار 2010